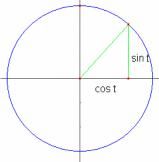
Identités trigonométriques

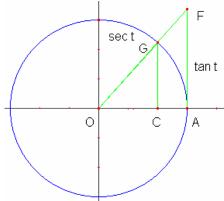
Il y en a trois.

Première identité de base.



Avec Pythagore $\Rightarrow \sin^2 t + \cos^2 t = 1$

Deuxième identité de base.

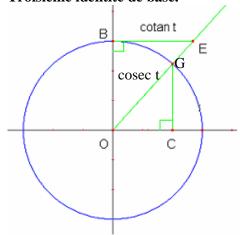


 $\sin^2 t + \cos^2 t = 1$ (Divisons les deux côtés de l'égalité par $\cos^2 t$)

$$\frac{\sin^2 t}{\cos^2 t} + \frac{\cos^2 t}{\cos^2 t} = \frac{1}{\cos^2 t} \implies \tan^2 t + 1 = \sec^2 t$$

Démonstration : $\frac{mOF}{mOG} = \frac{mOA}{mOC}$ \longrightarrow $mOF = \frac{mOAxmOG}{mOC} = \frac{1x1}{\cos t} = \sec t$

Troisième identité de base.



 $\sin^2 t + \cos^2 t = 1$ (Divisons les deux côtés de l'égalité par $\sin^2 t$)

$$\frac{\sin^2 t}{\sin^2 t} + \frac{\cos^2 t}{\sin^2 t} = \frac{1}{\sin^2 t} \rightarrow 1 + \cot^2 t = \csc^2 t$$

Démonstration:

$$\frac{mBE}{mOC} = \frac{mOB}{mCG} \implies mBE = \frac{mOBxmOC}{mCG} = \frac{1x\cos t}{\sin t} = \cot ant$$

$$\frac{mOE}{mOG} = \frac{mOB}{mCG} \implies mOE = \frac{mOBxmOG}{mCG} = \frac{1x1}{\sin t} = \cos ect$$

Trouver les valeurs trigonométriques

À partir d'une valeur trigonométrique et d'un quadrant où se situe le point P(t), on peut trouver la valeur des autres fonctions trigonométriques.

Exemple:
$$\sin t = 1/2$$
 et $t \in [\frac{\pi}{2}, \pi]$

$$\sin^2 t + \cos^2 t = 1$$
 \rightarrow $\cos^2 t = 1 - \sin^2 t$ \rightarrow $\cos t = \sqrt{1 - (\frac{1}{2})^2} = \sqrt{1 - (\frac{1}{4})} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$

Donc, $\cos t = -\frac{\sqrt{3}}{2}$ car il est dans le deuxième quadrant

Tan
$$t = \frac{\sin t}{\cos t} = \frac{(\frac{1}{2})}{-(\frac{\sqrt{3}}{2})} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$$

Sec
$$t = \frac{1}{\cos t} = \frac{1}{-\frac{\sqrt{3}}{2}} = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$$

Identités trigonométriques

Cosec
$$t = \frac{1}{\sin t} = \frac{1}{(\frac{1}{2})} = 2$$

Cotan $t = \frac{1}{-\frac{\sqrt{3}}{3}} = -\frac{3\sqrt{3}}{\sqrt{3}} = -\frac{3\sqrt{3}}{3}$